
MWW: Basic Wireless Tutorial Handout

C. Nicolas Barati, Rahman Doost-Mohammady,
Oscar Bejarano and Ashutosh Sabharwal

September 2019

This handout intends to guide you through a set of MATLAB® scripts covering
basic concepts in Wireless Communications. The handout is divided into two
parts. In Part I, we will use the Matlab-based simulation environment. In
Part II, we will use the RENEW experimentation framework as deployed on
POWDER framework. In both sections, you will be given a short description
followed by a snapshot of incomplete code as your starting point for the exercises.

1

Preliminaries

You will need to run MATLAB remotely by doing ssh with graphics enabled
to the POWDER machines. If you have Linux installed on your laptops, you
just run ssh -X usrnm@reomte_server from a terminal. In case you are using
Windows or Mac, here are some instructions:

Instructions for ssh -X on Windows

1. Install the Xming software.

2. Download PuTTY and install it.

3. Run Xming on your PC to start the X server.

4. Run PuTTY and set things up as follows:

• Enter the remote server name in Host Name

• Make sure the Connection type is set to SSH

• Enable X11 forwarding (Connection > SSH > X11)

5. Log in to the remote server.

6. Once you are logged into the Linux system, you can run MATLAB.

Instructions for ssh -X on Mac

1. Install XQuartz on your Mac.

2. Run Applications > Utilities > XQuartz.app

3. Right click on the XQuartz icon in the dock and select Applications ¿
Terminal. This should bring up a new xterm terminal windows.

4. In this xterm windows, ssh into the linux system of your choice using the
-X argument (secure X11 forwarding). ssh -X usrnm@remote_server

5. Once you are logged into the linux system, you can MATLAB and it will
display on your Mac.

2

http://sourceforge.net/projects/xming/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.xquartz.org

Simulation

1.1 QAM Modulation

As described in the presentation, in QAM modulation a set of bits is represented
on a complex 2-D plane, where each axis is a sinusoid in 90o phase difference.
Each point on the complex plane consists of K bits while M is the modulation
order.

Step I: Open the Matlab function bits2syms.m. The inputs are bitstream

and MOD_ORDER. The latter can be one of 2, 4, 16 and 64. Before invoking the
function, complete the following code by giving the number of bits corresponding
to each symbol; this number is a function of MOD_ORDER. Also, check if the
number of the given bits is divisible by the number of bits in a symbol.

1 % Do yourselves: derive the number of bits per symbol
2 nbits = length(bitstream);
3 sym bits = ..;
4 if ..
5 error("Length of bit stream has to be divisible by sym bits");
6 end

Step II: After the above step, create a vector of random bits and call bits2sym.
Test the four different modulation orders. Make sure your bit stream is large
enough so in higher modulation orders you have a constellation point for every
combination of bits. Note that the implementation of modulation is not unique.
In fact, there are better (more intuitive) ways of mapping bits to complex sym-
bols compared to what you see here.

1.2 QAM Demodulation

Here, you will demodulate a series of complex symbols received through an
AWGN or Rayleigh channel. We assume perfect channel knowledge for now.

Step I: Open mod_demod.m and syms2bits.m. As you see, the first one is
just a script calling bits2syms and syms2bits and plotting the modulated and
demodulated symbols. The function syms2bits acts as both channel and de-
modulator. Complex baseband symbols that have undergone some distortion
due to noise and the baseband channel are first equalized and then demodu-

3

lated to integer representations based on the decision regions defined for each
modulation order. Again, this is not a unique way of mapping symbols/bits to
integers/bits.

Step II: In syms2bits complete the following code to get the bits from the
demodulated symbols:

1 % Do your selves: Get bits from rx data:
2 bits matrix = .. ; % This is a matrix
3 bits = bits matrix(:);

Then, in mod_demod.m calculate symbol and bit error rates.

1 % Do your selves: Calculate error rates:
2 sym err = .. ;
3 bit err = ..;
4 fprintf("Symbol Error Rate = %12.4e\t Bit Error Rate = ...

%12.4e\n", sym err, bit err);

After executing your scripts, you will see plots depicting modulated and demod-
ulated symbols.

Step III: Try different SNRs and change the channel to Rayleigh by setting the
argument awgn to 0 for the same modulation order. Try different modulation
orders. Observe how the plots and the error rates change based on these inputs.

1.3 OFDM SISO

Here we will run a simulation of an OFDM system. OFDM is widely used in
modern wireless communications systems. We will leverage on the mod/demod
functions we saw earlier and focus on frequency domain to time domain, and vice
versa, symbol transition, equalization, and channel estimation. You will also test
various channel models and observe their effect on the effective SNR and error
rates. The script has several parts. They are, at the transmitter: modulation,
sub-carrier assignment, time-domain conversion, CP and finally hand-over to the
channel. At the receiver, we have synchronization through correlation, frequency
domain conversion, per-sub-carrier equalization, and demodulation. Finally, we
plot the results. Note that in simulation mode we loop over a range of SNRs nt
times to assess the BER for a given SNR

4

Figure 1: OFDM frame structure. Data frames in green, phase noise pilots in
light orange and LTS used for synchronization and channel estimation in light
blue.

Let us first look at the OFDM frame structure. It is shown in figure 1. The
light blue portion is occupied by synchronization signals (LTS 1) that will also
be used for channel estimation. The light orange squares are for pilots used
to mitigate frequency domain errors due to phase noise. The green ones are
reserved for data.

Step I: Open ofdm_siso.m. Complete the following code to obtain time-domain
samples. First, you need to assign data symbols and phase noise pilots to their
respective sub-carriers. Then, transform frequency-domain symbols to time-
domain samples.

1 % Do yourselves: construct the TD input matrix
2 fdd mat = zeros(N SC, N OFDM SYM);
3

4 % Insert the data and pilot values; other sub−carriers will ...
remain at 0

5 fdd mat(.., :) = ..;
6 fdd mat(.., :) = ..;
7

8 % Do yourselves: get TD samples:
9 tdd tx payload mat = ..;

1LTS stands for long training symbols.

5

Step II: Now, add the CP to the time domain matrix. Remember, CP is
essentially the last CP_LEN samples of each OFDM symbol copied and appended
to the beginning the same OFDM symbol. When you are done, each OFDM
symbol must have N_SC+CP_LEN samples.

1 if(CP LEN > 0)
2 % Do yourselves: Insert CP
3 tx cp = tdd tx payload mat(.., :);
4 tdd tx payload mat = ..; % tdd tx payload mat is CP and itself.
5 end

Step III: Upon reception, the receiver performs a correlation with the local
replica of the known LTS to determine the start of the frame. Then, it will
gather the samples belonging to the two LTS, bring them to frequency-domain
and perform channel estimation. Complete the following code for the latter two
steps.

1 % Received LTSs
2 % Do yourselves: take the FD pilots:
3 rx lts1 f = ..;
4 rx lts2 f = ..;
5

6 % Do yourselves: Calculate channel estimate from average of 2 ...
training symbols.

7 % Remove the LTSs and average over the two columns.
8 rx H est = ..;

Step IV: Now that we have an estimate of the channel per each sub-carrier
(rx_H_est), we can equalize, i.e., remove the effect of the channel from our
data symbols. Complete the following code. Be careful with the dimensions of
the matrices and vectors. You will need to repeat/expand one of them to match
the other.

1 % Do yourselves: bring to frequency domain:
2 syms f mat = ..;
3

4 % Do yourselves: Equalize.
5 syms eq mat = .. ;

Step V: One last thing before moving on to the next section. As mentioned
in the slides, we can have an estimate of the (effective) SNR based on how far
the demodulated symbols are from the transmitted ones. The effective SNR
depends on the square of their distances. This is especially useful in cases we
don’t directly know the SNR. Here in our simulations, we define the SNRs.

6

However, next when we will use the RENEW-POWDER equipment, we cannot
set the SNR, and EVM is a nice way of SNR estimation. Complete the following
code to calculate the EVM and the effective SNR.

1 % EVM & SNR
2 % Do yourselves. Calculate EVM and effective SNR:
3 evm mat = ..;
4 aevms = ..; % needs to be a scalar
5 snr = ..; % calculate in dB scale.

1.4 Channel Models

Now that we have an OFDM system ready, we can start experimenting with var-
ious chanel models. We consider three simulated models here AWGN, smoothed
Reyleigh and Multipath Clusetered (MPC). Rayleigh is smoothed and not i.i.d.
because otherwise our channel estimation cannot keep up with such rapid changes
that an i.i.d. channel would cause. In getRXVec.m, you can see the different
channel implementations. Note that so far we have been using AWGN by de-
fault.

Step I: Take a look at the MPC portion of the code. Here are the parameters
of the channel.

1 nsub = 20; % number of subpaths per cluster
2 fmaxHz = 0; % max Doppler spread in Hz. NOT USED.
3 freqErrHz = 0; % constant frequency error in Hz. KEEP ...

at 0.
4 dlyns=0; % constant delay in ns
5 angMotion=0; % angle of motion. KEEP at 0.
6

7 % Cluster parameters represented as a vector with one
8 % component per cluster
9 angcRx = [0 90]'*pi/180; % RX center angle in radians

10 angspdRx = 10*pi/180; % RX angular spread in ...
radians

11 angcTx = 0; % TX center angle in radians
12 angspdTx = 0; % TX angular spread in ...

radians
13 dlycns = [0 100]'; % excess delay of first ...

path in cluster nsec
14 dlyspdns = 30; % delay spread within ...

cluster in nsec
15 powcdB = [−3 −3]'; % gain power in dB 1/2 ...

the power on each cluster
16 fadec = [1 1]'; % fadec(i)= 0 => cluster ...

i is non−fading

7

Here we are simulating two clusters coming at 0o and 90o each. They have
a certain angular spread and relative delays. Also, there are random delays
between each ray of each cluster.

You may set the channel model in ofdm_siso.m by changing the variable chan_type
in chan type = "rayleigh"; to either on of awgn (default), rayleigh or mpc.

Step II: Play a bit with various channel models and tweak the parameters of
the MPC channel and see their effect on the BER and other metrics and plots in
ofdm_siso.m. You can set the channel model to one of the options given. You
can also tweak the noise/channel variance, and/or, in MPC, parameters such
as power fraction on each cluster (dB), angles of arrival, delay spread between
clusters and rays etc. Note that our MPC is static and hence anything related
to Doppler and Doppler shift is kept to zero. Compare MPC with smoothed
Rayleigh and AWGN.

1.5 OFDM SIMO

Now as our first multi-antenna exercise, we will look at the performance of
SIMO. Here we use only two receivers because we wanted to illustrate the dif-
ference in performance between SIMO MRC and each branch individually, and
plotting N different branches would be cumbersome.

Step I: Since we use the same OFDM system, most of the code is identical to
the OFDM SISO case. You are only asked to do the MRC coherent combining
by completing the following code.

1 % Equalize MRC
2 rx H est = reshape(rx H est 2d,N SC,1,N BS NODE); % Expand ...

to a 3rd dimension to agree with the dimensions od syms f mat
3 % Do yourselves: normalization coefficient:
4 H pow = ..;
5 H pow = repmat(H pow,1,N OFDM SYM);
6

7 % Do yourselves: MRC equalization:
8 syms eq mat mrc = ..; % MRC equalization: combine The two ...

branches and equalize.
9 % Don't forget to normalize by the channel power!

8

The equation for MRC combinig is:

x̂ =
h∗

||h||2
y, (1)

where x̂ is the equalized frequency domain symbol (on a sub-carrier), y is the
received symbol from two antennas, h is the channel and (.)∗ denotes conjugate
transpose.

Step II: Try different channel models as you did in SISO and see what changes,
and how much, in the plots and our metrics of interest (EVM, BER etc.)

Note: When implementing the MRC equation, be careful about the dimensions
of the matrices you are about to manipulate.

1.6 OFDM MIMO

In this final section of simulations we will look into multiuser massive MIMO.
You will implement Zero forcing and Conjugate beamforming. As with SIMO,
we still simulate an OFDM system, and thus we can build on our previous
exercises.

M-MIMO relies on pilot orthogonality. We have placed our pilots in different
OFDM symbols as you see in the following excerpt of the code. Figure 2 depict
this time orthogonality. Furthermore, to keep things simple we simulate only
one channel model, Rayleigh.

1 % Arrange time−orthogonal pilots
2 preamble common = [lts t(33:64); repmat(lts t,N LTS SYM,1)];
3 l pre = length(preamble common);
4 pre z = zeros(size(preamble common));
5 preamble = zeros(N UE * l pre, N UE);
6 for jp = 1:N UE
7 preamble((jp−1)*l pre + 1: (jp−1)*l pre+l pre,jp) = ...

preamble common;
8 end

9

Figure 2: OFDM frame structure. Data frames in green, phase noise pilots in
light orange and LTS used for synchronization and channel estimation in light
blue for user 1, and light purple for user 2.

The equations for ZF is

x̂ = H†y (2)

and for conjugate BF

x̂ =
H∗

f(||H[i,i]||2)
y, (3)

where where x̂ is the vector of equalized frequency domain symbols and contains
one symbol x̂j

i for each user i on each sub-carrier j, y is the received symbol

vector from M antennas, H is the channel matrix, H† = (H∗H)−1H∗ is the
pseudo inverse of H, f(.) is some normalizing function of the channel power
that you need to find, and (.)∗ denotes conjugate transpose.

10

Step I:Complete the following code to implement ZF and conjugate BF.

1 for j=1:length(nz sc)
2

3 if(strcmp(MIMO ALG,'ZF'))
4 % Do yourselves: calculate pseudo−inverse and apply to ...

the received symbols:
5 HH inv = ..;
6 x = ..;
7 else
8 % Do yourselves: calculate the normalization coefficient ...

and apply conjugate BF:
9 % Normalization coeff:

10 H pow = ..;
11 % Apply BF:
12 x = ..;
13 end
14

15

16 end

You may change the MIMO algorithm by replacing "ZF" in MIMO ALG = 'ZF';

to "conj" (or anything really!).

Step II: By running the script you will see various plots showing the perfor-
mance of your MIMO implementation. Change the SNR and the number of BS
antennas and see how the plots and the performance change. Note however,
that as the number of nodes increases, the plots become more crowded.

2 RENEW-POWDER Platform

The experimentation platform’s hardware consists of a massive MIMO BS and
two clients. The two clients are two Iris boards and the BS is essentially a
collection of 32 Iris boards, each with dual polarization, grouped in chains and
connected through a hub. In this session, however, we will use only one chain
of eight antennas. The supporting software with which you will interact today
consists of these MATLAB scripts, a MATLAB driver and a python driver. The
role of each was explained in the slides. Before running some experiments let
us review some features of our massive MIMO platform.

TDD Frame Schedule: The system operates in TDD mode, i.e., the same
bandwidth is used for both Downlink and Uplink but at different time slots.

11

Figure 3: TDD Frame

The experimenter can design a frame schedule and give it as input to both the
BS and the clients. An example of such a frame design is shown in figure 3.
Each slot can be in one of four modes: R, for reception, G, for guard-band, T
for transmission and P for pilot. The notion of P may be a bit confusing, since
we will be using this mode for transmitting not only our pilots (e.g, LTS) but
also our data, and will not use T. P essentially denotes transmission of data
stored onto the boards’ FPGA RAM block.

Block RAM Transmission: While the system provides a streaming func-
tionality, we use Block RAM TX. This way, during P slots the boards transmit
the content stored on their RAM. This can be, as said above, either some sort
of pilot or data. Since throughout this tutorial we only look into Uplink trans-
mission, only the clients will transmit data. They will do so every time there
is a P slot in their schedule. Note that the amount of samples that can be
transmitted at each P slot is upper-bounded by the size of the RAM, which is
4096. Therefore, the total number of (sub-carriers + CP) × OFDM symbols
should be below 4096.

The communication starts as follows. Both the clients and the BS boards are
given their respective schedules. When there is a P slot on the BS side, a beacon
sequence is broadcast through only one of the available boards. Upon detecting
this beacon through correlation, the clients start counting slots and frames and
are synchronized with the base station. They know that the beacon slot was
the first slot of the frame and they make out the rest of the schedule relative
to that. Now, since we use Block RAM TX, during the P slots of the clients,
they transmit what they have in their RAM. The implementation of the whole

12

synchronization and beacon TX/RX is done under the hood and the MATLAB
user does not need to bother. The only thing that is defined in MATLAB is the
schedule for the clients and the BS boards.

2.1 Setting up the RENEW-POWDER MATLAB envi-
ronment

In this section, we look into how to set up the experimentation platform first
through a basic SISO OFDM.

Observe the following code in ofdm_siso.m.

1 % Create two Iris node objects:
2 b ids(end+1) = "0339";
3 ue ids(end+1) = "RF3C000045";
4

5 b prim sched = "PGGGGGRG"; % BS primary noede's ...
schedule: Send Beacon only from one Iris board

6 ue sched = "GGGGGGPG"; % UE schedule
7

8 b scheds = b prim sched;
9

10 ue scheds = string.empty();
11 for iu = 1:N UE
12 ue scheds(iu,:) = ue sched;
13 end
14

15 n samp = length(tx vec iris);
16

17 % Iris nodes' parameters
18 sdr params = struct(...
19 'id', b ids, ...
20 'n chain',N BS NODE, ...
21 'txfreq', TX FRQ, ...
22 'rxfreq', RX FRQ, ...
23 'txgain', TX GN, ...
24 'rxgain', RX GN, ...
25 'sample rate', SMPL RT, ...
26 'n samp', n samp, ... % number of samples per ...

frame time.
27 'tdd sched', b scheds, ... % number of zero−paddes ...

samples
28 'n zpad samp', (N ZPAD PRE + N ZPAD POST) ...
29);
30

31 sdr params(2) = sdr params(1);
32 sdr params(2).id = ue ids(1);
33 sdr params(2).n chain = 1;
34 sdr params(2).txfreq = TX FRQ;

13

35 sdr params(2).rxfreq = RX FRQ;
36 sdr params(2).tdd sched = ue scheds(1);
37

38 rx vec iris = getRxVec(tx vec iris, N BS NODE, N UE, ...
chan type, [], sdr params(1), sdr params(2));

We begin by defining the ids of the boards we will be using. The ones in the
example above are different than what we will use today.

Next, we will define the TDD frames’ schedule for both the BS and the client
(or, UE as noted in the script). Then, we create structs holding the parameters
of the nodes. As you can see these parameters are things such as schedule,
ID, sample rate, TX/RX frequency number of samples per transmission slot
etc. Finally, we call getRxVec() with our two structs as input. Before running,
make sure that SIM_MOD is set to 0 and chan_type is now "iris".

Now open getRXVec.m to see the data flow before handing over to the MATLAB
driver. Notice that this file can support up to two clients, which is fine since
this is the maximum number of clients at our disposal.

1 elseif chan type == "iris"
2 % Real HW:
3 N ZPAD PRE = 90;
4 n samp = bs param.n samp;
5 node bs = iris py(bs param); % initialize BS
6 node ue1 = iris py(ue param(1)); % initialize UE
7 if n ue >1
8 node ue2 = iris py(ue param(2));
9 end

10

11 node ue1.sdr txgainctrl();
12 if n ue >1
13 node ue2.sdr txgainctrl(); % gain control
14 end
15

16 node bs.sdrsync(1); % synchronize delays ...
only for BS

17

18 node ue1.sdrsync(0);
19 if n ue >1
20 node ue2.sdrsync(0);
21 end
22 node ue1.sdrrxsetup(); % set up reading stream
23 if n ue >1
24 node ue2.sdrrxsetup();
25 end
26 node bs.sdrrxsetup();
27

28 chained mode = 0;
29 node bs.set config(chained mode,1); % configure the BS: ...

14

schedule etc.
30

31 node ue1.set config(chained mode,0); % configure the UE: ...
schedule etc.

32 if n ue >1
33 node ue2.set config(chained mode,0);
34 end
35

36 node bs.sdr txbeacon(N ZPAD PRE); % Burn beacon to the ...
BS(1) RAM

37

38 node ue1.sdrtx(tx data(:,1)); % Burn data to the UE RAM
39 if n ue >1
40 node ue2.sdrtx(tx data(:,2));
41 end
42 node bs.sdr activate rx(); % activate reading stream
43

44 node ue1.sdr setcorr() % activate correlator
45 if n ue >1
46 node ue2.sdr setcorr()
47 end
48

49 % Iris Rx
50 % Only UL data:
51

52 [y, data0 len] = node bs.sdrrx(n samp); % read data
53

54 node bs.sdr close(); % close streams and exit ...
gracefully.

55 node ue1.sdr close();
56 if n ue >1
57 node ue2.sdr close();
58 end
59 fprintf('Length of the received vector from HW: \tUE:%d\n', ...

data0 len);

The above portion of the code calls several functions of the MATLAB driver.
The driver in return will “translate” these calls into Python and call the re-
spective functions in the Python driver. It begins by calling a function that
instantiates two containers of Python objects. One with all the boards of the
BS, in case we use more than one board, and one for the client. Next, various
internal functionalities such as gain control and delay synchronization between
the BS boards are set. After that, reading streams from the HW boards are set
up and will be activated a few calls down. Next, the BS and UEs are configured
and beacon and data are stored onto the BS and client’s respective RAM. On
the UE the correlator is set up to expect the beacon and through a trigger the
BS starts the frame count. The latter step is pushed to the MATLAB driver.
In each P slot, it will send the beacon and during each R slot, it will read data.
Finally, when all the slots of the TDD frame schedule are parsed, the nodes are
shut down.

15

2.2 Experimentation

We have covered all the material on basic wireless comm. and MIMO in the
simulation section. Here you are asked to repeat the same process but on data
obtained via a real channel instead of simulation. The BS is a common resource
and unfortunately, there is no way of parallelization. Each group is asked to run
their experiments one after the other. Also, to make things smoother and faster
we ask that only one person from each group run an experiment. After a suc-
cessful run, the group representative can save the data returned by getRXVec()

and share it with her group members.

If you want to run the scripts on stored data, first set SIM_MOD to 1. Then, set
chan_type to "past_run". Finally, in getRXVec.m

1 elseif chan type == "past run"
2 % Past data
3 old data = load(past data fname);
4 y = old data.rx vec old data;

replace past_data_fname and rx_vec_old_data with the names you used when
storing your data. After these steps, you are ready to run your scripts on stored
data.

2.2.1 SISO Experiments

If you have set up everything according to Sec. 2.1, you can go ahead and run
your script. If the run is successful, store your data. You may have to run the
script several times to get sound data.

Compare what you see with simulation.

2.2.2 SIMO Experiments

Not much changes here. You just need to provide two valid IDs for the BS nodes
in ofdm_simo.m. Consult POWDER_arrays.txt and use the board next to the
one you used for SISO.

16

Save your data and compare against simulation.

2.2.3 MIMO Experiments

Finally, run ofdm_mimo.m. Here too, you need to provide valid BS node IDs.
Consult the ID txt file we have given you.

Upon a successful run, save your data. If you used ZF, when collecting data,
run the script in simulation mode with conjugate BF this time, and vice versa.
As in other cases, compare your results with what you get in simulation.

17

	QAM Modulation
	QAM Demodulation
	OFDM SISO
	Channel Models
	OFDM SIMO
	OFDM MIMO
	RENEW-POWDER Platform
	Setting up the RENEW-POWDER MATLAB environment
	Experimentation
	SISO Experiments
	SIMO Experiments
	MIMO Experiments

